If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2=-4x+23
We move all terms to the left:
10x^2-(-4x+23)=0
We get rid of parentheses
10x^2+4x-23=0
a = 10; b = 4; c = -23;
Δ = b2-4ac
Δ = 42-4·10·(-23)
Δ = 936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{936}=\sqrt{36*26}=\sqrt{36}*\sqrt{26}=6\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{26}}{2*10}=\frac{-4-6\sqrt{26}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{26}}{2*10}=\frac{-4+6\sqrt{26}}{20} $
| 7z+10-2=8z-2(2-5) | | 4a+21=77 | | 2x-3x+4x=21 | | 7x+x-7x=3 | | 5x-40=7x-28 | | 3z-3z+3z-2z=4 | | 36z+11-20z=50+4z-(-1) | | 7x+5x+3x=225 | | 14w-12w=10 | | 13x-5=3÷2 | | 7x-20=x+100 | | 18z-5z+2z-15z+z=8 | | 22z+11-18z=50+4z-(-1) | | (X-20)+(x+7)=180 | | 12x-90=66 | | 5x+4x+3x=108 | | 15q-q+-q-12q+-14q=-13 | | 5x+4x+3x=225 | | 5(2x-3)=x(8-×) | | 9x÷8+1=10 | | t+-t-(-5t)=-10 | | 2.4{m-3}+3.8=-8.2 | | 9+4a/7=3 | | 7r-r-6r+3r=18 | | 7r-r—6r+3r=18 | | 36-(3c+4)=2(c+7)+7 | | z–(–8)=1 | | 3g-3g+3g=3 | | -2-3x-4=-5-6x-7 | | 24t-16t^2=0 | | 24t-16^2=0 | | 6+2/5(b)=12 |